Applying a regional hydrology model to evaluate locations for groundwater replenishment with

hillslope runoff under different climate and land use scenarios Sarah Beganskas (sbeganskas@ucsc.edu)¹, Kyle Young², Andrew T. Fisher¹, Sacha Lozano³, Ryan Harmon⁴, Elke Teo¹

¹University of California, Santa Cruz, CA ²Coast Guard Academy, New London, CT ³Resource Conservation District of Santa Cruz County ⁴Colorado School of Mines, Golden, CO

Replenishing groundwater with hillslope runoff can be most effective in locations with suitable soil/aquifer conditions and an abundant supply of excess hillslope runoff.

We developed tools to apply PRMS¹ to evaluate hillslope runoff generation at sub-watershed scale.

We used high-resolution vegetation² and soil³ input data to characterize each HRU (*above*), and calibrated/validated using daily streamflow data (*below*).

During dry scenarios, **more than twice as much runoff** is generated under contemporary land use than under pre-development conditions.

Reducing basin overdraft by 10%⁵ would require collecting 1,000 af/yr—just 6% of runoff generated during dry times.

Field data **provide ground truth** for regional models and show that runoff collection can be an effective water management strategy, **even during a severe drought**⁶.

A large fraction (14%) of the Pajaro Valley appears to be well-suited for groundwater replenishment with hillslope runoff.

Markstrom, S. L. et al. PRMS-IV, the Precipitation-Runoff Modeling System, Version 4. 169 (U.S. Geological Survey, 2015).
 Soil Survey Staff, U.S. Department of Agriculture. Soil Survey Geographic (SSURGO) Database. (2014).
 Available at: https://gdg.sc.egov.usda.gov/GDGOrder.aspx.
 Junited States Department of Agriculture. CALVEG Vegetation Classification and Mapping. (2014). Available at: https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=stelprdb5347192.
 Flint, L. E. & Flint, A. L. Simulation of climate change in San Francisco Bay basins, California: Case studies in the Russian River Valley and Santa Cruz Mountains. 68 (U.S. Geological Survey, 2012).
 Pajaro Valley Water Management Agency. Basin Management Plan Update, Final: February 2014. 80 pp. (Pajaro Valley Water Management Agency, 2014).
 Beganskas, S. & Fisher, A. T. Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications. J. Environ. Manage. 200, 366–379 (2017).

The Recharge Initiative

Security and Sustainability Replenish • Recover • Restore

This project is funded by the National Science Foundation Graduate Fellowship Program, a grant from the California State Coastal Conservancy (13-118), the Recharge Initiative, and the UC Water Security and Sustainability Research Initiative.

